On linear infeasibility arising in intensity-modulated radiation therapy inverse planning

Intensity–modulated radiation therapy (IMRT) gives rise to systems of linear inequalities, representing the effects of radiation on the irradiated body. These systems are often infeasible, in which case one settles for an approximate solution, such as an {a,ß}–relaxation, meaning that no more than a percent of the inequalities are violated by no more than ß … Read more

Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumor as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighboring intensities. Accurately … Read more

The dose-volume constraint satisfaction problem for inverse treatment planning with field segments

The prescribed goals of radiation treatment planning are often expressed in terms of dose-volume constraints. We present a novel formulation of a dose-volume constraint satisfaction search for the discretized radiation therapy model. This approach does not rely on any explicit cost function. The inverse treatment planning uses the aperture based approach with predefined, according to … Read more

The least-intensity feasible solution for aperture-based inverse planning in radiation therapy.

Aperture-based inverse planning (ABIP) for intensity modulated radiation therapy (IMRT) treatment planning starts with external radiation fields (beams) that fully conform to the target(s) and then superimposes sub-fields called segments to achieve complex shaping of 3D dose distributions. The segments’ intensities are determined by solving a feasibility problem. The least-intensity feasible (LIF) solution, proposed and … Read more