An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more

A transformation-based discretization method for solving general semi-infinite optimization problems

Discretization methods are commonly used for solving standard semi-infinite optimization (SIP) problems. The transfer of these methods to the case of general semi-infinite optimization (GSIP) problems is difficult due to the $x$-dependence of the infinite index set. On the other hand, under suitable conditions, a GSIP problem can be transformed into a SIP problem. In … Read more