A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Solving Multi-Leader-Follower Games

Multi-leader-follower games arise when modeling competition between two or more dominant firms and lead in a natural way to equilibrium problems with equilibrium constraints (EPECs). We examine a variety of nonlinear optimization and nonlinear complementarity formulations of EPECs. We distinguish two broad cases: problems where the leaders can cost-differentiate and problems with price-consistent followers. We … Read more

Interior Methods for Mathematical Programs with Complementarity Constraints

This paper studies theoretical and practical properties of interior-penalty methods for mathematical programs with complementarity constraints. A framework for implementing these methods is presented, and the need for adaptive penalty update strategies is motivated with examples. The algorithm is shown to be globally convergent to strongly stationary points, under standard assumptions. These results are then … Read more

Leader-Follower Equilibria for Electric Power and NO_x Allowances Markets

This paper investigates the ability of the largest producer in an electricity market to manipulate both the electricity and emission allowances markets to its advantage. A Stackelberg game to analyze this situation is constructed in which the largest firm plays the role of the leader, while the medium-sized firms are treated as Cournot followers with … Read more

A Trust-Region Algorithm for Global Optimization

We consider the global minimization of a bound-constrained function with a so-called funnel structure. We develop a two-phase procedure that uses sampling, local optimization, and Gaussian smoothing to construct a smooth model of the underlying funnel. The procedure is embedded in a trust-region framework that avoids the pitfalls of a fixed sampling radius. We present … Read more

On the Global Minimization of the Value-at-Risk

In this paper, we consider the nonconvex minimization problem of the value-at-risk (VaR) that arises from financial risk analysis. By considering this problem as a special linear program with linear complementarity constraints (a bilevel linear program to be more precise), we develop upper and lower bounds for the minimum VaR and show how the combined … Read more

SIAG/Opt Views-and-News Vol 14 No 1

SIAM’s SIAG/Opt Newsletter special issue on Large Scale Nonconvex Optimization. Guest editors Sven Leyffer and Jorge Nocedal, with contributions by Gould, Sachs, Biegler, Waechter, Leyffer, Bussieck and Pruessner. CitationSIAG/Opt Views-and-News, Volume 14 Number 1, April 2003. http://fewcal.uvt.nl/sturm/siagopt/ArticleDownload View PDF

Numerical experience with solving MPECs as NLPs

This paper describes numerical experience with solving MPECs as NLPs on a large collection of test problems. The key idea is to use off-the-shelf NLP solvers to tackle large instances of MPECs. It is shown that SQP methods are very well suited to solving MPECs and at present outperform Interior Point solvers both in terms … Read more

The Penalty Interior Point Method fails to converge for Mathematical Programs with Equilibrium Constraints

This paper presents a small example for which the Penalty Interior Point Method converges to a non-stationary point. The reasons for this adverse behaviour are discussed. CitationNumerical Analysis Report NA/208, Department of Mathematics, University of Dundee, February 2002.ArticleDownload View PDF

Local convergence of SQP methods for Mathematical Programs with Equilibrium Constraints

Recently, it has been shown that Nonlinear Programming solvers can successfully solve a range of Mathematical Programs with Equilibrium Constraints (MPECs). In particular, Sequential Quadratic Programming (SQP) methods have been very successful. This paper examines the local convergence properties of SQP methods applied to MPECs. It is shown that SQP converges superlinearly under reasonable assumptions … Read more