Modeling Design and Control Problems Involving Neural Network Surrogates

We consider nonlinear optimization problems that involve surrogate models represented by neural net-works. We demonstrate first how to directly embed neural network evaluation into optimization models, highlight a difficulty with this approach that can prevent convergence, and then characterize stationarity of such models. We then present two alternative formulations of these problems in the specific … Read more

Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and Heuristics

In this paper we consider the problem of learning a regression function without assuming its functional form. This problem is referred to as symbolic regression. An expression tree is typically used to represent a solution function, which is determined by assigning operators and operands to the nodes. The symbolic regression problem can be formulated as … Read more

Compact Representations of Structured BFGS Matrices

For general large-scale optimization problems compact representations exist in which recursive quasi-Newton update formulas are represented as compact matrix factorizations. For problems in which the objective function contains additional structure, so-called structured quasi-Newton methods exploit available second-derivative information and approximate unavailable second derivatives. This article develops the compact representations of two structured Broyden-Fletcher-Goldfarb-Shanno update formulas. … Read more

Binary Optimal Control by Trust-Region Steepest Descent

We present a trust-region steepest descent method for dynamic optimal control problems with binary-valued integrable control functions. Our method interprets the control function as an indicator function of a measurable set and makes set-valued adjustments derived from the sublevel sets of a topological gradient function. By combining this type of update with a trust-region framework, … Read more

A Mixed-Integer PDE-Constrained Optimization Formulation for Electromagnetic Cloaking

We formulate a mixed-integer partial-differential equation constrained optimization problem for designing an electromagnetic cloak governed by the 2D Helmholtz equation with absorbing boundary conditions. Our formulation is an alternative to the topology optimization formulation of electromagnetic cloaking design. We extend the formulation to include uncertainty with respect to the angle of the incidence wave, and … Read more

Inversion of Convection-Diffusion Equation with Discrete Sources

We present a convection-diffusion inverse problem that aims to identify an unknown number of sources and their locations. We model the sources using a binary function, and we show that the inverse problem can be formulated as a large-scale mixed-integer nonlinear optimization problem. We show empirically that current state-of-the-art mixed-integer solvers cannot solve this problem … Read more

A Solution Framework for Linear PDE-Constrained Mixed-Integer Problems

We present a general numerical solution method for control problems with PDE-defined state variables over a finite set of binary or continuous control variables. We show empirically that a naive approach that applies a numerical discretization scheme to the PDEs (and if necessary a linearization scheme) to derive constraints for a mixed-integer linear program (MILP) … Read more

A Bilevel Approach for Identifying the Worst Contingencies for Nonconvex Alternating Current Power Systems

We address the bilevel optimization problem of identifying the most critical attacks to an alternating current (AC) power flow network. The upper-level binary maximization problem consists in choosing an attack that is treated as a parameter in the lower-level defender minimization problem. Instances of the lower-level global minimization problem by themselves are NP-hard due to … Read more

A Method for Convex Black-Box Integer Global Optimization

We study the problem of minimizing a convex function on the integer lattice when the function cannot be evaluated at noninteger points. We propose a new underestimator that does not require access to (sub)gradients of the objective but, rather, uses secant linear functions that interpolate the objective function at previously evaluated points. These linear mappings … Read more

Mixed-Integer PDE-Constrained Optimal Control of Gas Networks

We develop a mixed-integer optimal control model with partial differential equation (PDE) constraints for gas transport networks, designed for controlling extreme state transitions, such as flow reversals. Our model shows how to combine binary compressor controls with PDE flow models. We model the flow of gas using a variant of the Euler equations, which we … Read more