Improved RIP-Based Bounds for Guaranteed Performance of Two Compressed Sensing Algorithms

Iterative hard thresholding (IHT) and compressive sampling matching pursuit (CoSaMP) are two mainstream compressed sensing algorithms using the hard thresholding operator. The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property (RIP) of sensing matrices. At present, the best known bound using RIP of order … Read more

Weak Stability of $\ell_1hBcminimization Methods in Sparse Data Reconstruction

As one of the most plausible convex optimization methods for sparse data reconstruction, $\ell_1$-minimization plays a fundamental role in the development of sparse optimization theory. The stability of this method has been addressed in the literature under various assumptions such as restricted isometry property (RIP), null space property (NSP), and mutual coherence. In this paper, … Read more

Constructing New Weighted l1-Algorithms for the Sparsest Points of Polyhedral Sets

The l0-minimization problem that seeks the sparsest point of a polyhedral set is a longstanding challenging problem in the fields of signal and image processing, numerical linear algebra and mathematical optimization. The weighted l1-method is one of the most plausible methods for solving this problem. In this paper, we develop a new weighted l1-method through … Read more

On an open question about the complexity of a dynamic spectrum management problem

In this paper we discuss the complexity of a dynamic spectrum management problem within a multi-user communication system with K users and N available tones. In this problem a common utility function is optimized. In particular, so called min-rate, harmonic mean and geometric mean utility functions are considered. The complexity of the optimization problems with … Read more

A Block Successive Upper Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization

Consider the problem of minimizing the sum of a smooth convex function and a separable nonsmooth convex function subject to linear coupling constraints. Problems of this form arise in many contemporary applications including signal processing, wireless networking and smart grid provisioning. Motivated by the huge size of these applications, we propose a new class of … Read more

Multivariate Nonnegative Quadratic Mappings

In this paper we study several issues related to the characterization of specific classes of multivariate quadratic mappings that are nonnegative over a given domain, with nonnegativity defined by a pre-specified conic order. In particular, we consider the set (cone) of nonnegative quadratic mappings defined with respect to the positive semidefinite matrix cone, and study … Read more