Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

We study a new geometric graph parameter $\egd(G)$, defined as the smallest integer $r\ge 1$ for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of $G$, can be completed to a matrix in the convex hull of correlation matrices of … Read more

Complexity of the positive semidefinite matrix completion problem with a rank constraint

We consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most $k$. We show that this problem is $\NP$-hard for any fixed integer $k\ge 2$. Equivalently, for $k\ge 2$, it is $\NP$-hard to test membership in the … Read more

Symmetry in RLT cuts for the quadratic assignment and standard quadratic optimization problems

The reformulation-linearization technique (RLT), introduced in [W.P. Adams, H.D. Sherali, A tight linearization and an algorithm for zero-one quadratic programming problems, Management Science, 32(10):1274–1290, 1986], provides a way to compute linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry … Read more

On semidefinite programming bounds for graph bandwidth

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, … Read more

On the complexity of computing the handicap of a sufficient matrix

The class of sufficient matrices is important in the study of the linear complementarity problem(LCP) – some interior point methods (IPM’s) for LCP’s with sufficient data matrices have complexity polynomial in the bit size of the matrix and its handicap. In this paper we show that the handicap of a sufficient matrix may be exponential … Read more

Polynomial interior point algorithms for general LCPs

Linear Complementarity Problems ($LCP$s) belong to the class of $\mathbb{NP}$-complete problems. Therefore we can not expect a polynomial time solution method for $LCP$s without requiring some special property of the matrix coefficient matrix. Our aim is to construct some interior point algorithms which, according to the duality theorem in EP form, gives a solution of … Read more

An EP theorem for dual linear complementarity problem

The linear complementarity problem (LCP) belongs to the class of NP-complete problems. Therefore we can not expect a polynomial time solution method for LCPs without requiring some special property of the matrix of the problem. We show that the dual LCP can be solved in polynomial time if the matrix is row sufficient, moreover in … Read more

New variant on the Mizuno-Todd-Ye predictor-corrector algorithm

We analyze a version of the Mizuno-Todd-Ye predictor-corrector interior point algorithm for the P_*(\kappa)-matrix linear complementarity problem (LCP). We assume the existence of a strictly positive feasible solution. Our version of the Mizuno-Todd-Ye predictor-corrector algorithm is a generalization of Potra’s (2002) conclusions on the LCP with P_*(\kappa)-matrices. To derive a formulation of the complexity for … Read more