Analysis of Copositive Optimization Based Linear Programming Bounds on Standard Quadratic Optimization

The problem of minimizing a quadratic form over the unit simplex, referred to as a standard quadratic optimization problem, admits an exact reformulation as a linear optimization problem over the convex cone of completely positive matrices. This computationally intractable cone can be approximated from the inside and from the outside by two sequences of nested … Read more

Symmetry in RLT cuts for the quadratic assignment and standard quadratic optimization problems

The reformulation-linearization technique (RLT), introduced in [W.P. Adams, H.D. Sherali, A tight linearization and an algorithm for zero-one quadratic programming problems, Management Science, 32(10):1274–1290, 1986], provides a way to compute linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry … Read more

On the Accuracy of Uniform Polyhedral Approximations of the Copositive Cone

We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called {\em copositive programs}, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more

A linear programming reformulation of the standard quadratic optimization problem

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO). It is NP-hard, and contains the maximum stable set problem in graphs as a special case. In this note we show that the SQO problem may be reformulated as an (exponentially sized) linear program. Citation … Read more

Solving standard quadratic optimization problems via linear, semidefinite and copositive programming

The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities … Read more