Optimal Linearized Alternating Direction Method of Multipliers for Convex Programming

The alternating direction method of multipliers (ADMM) is being widely used in a variety of areas; its different variants tailored for different application scenarios have also been deeply researched in the literature. Among them, the linearized ADMM has received particularly wide attention from many areas because of its efficiency and easy implementation. To theoretically guarantee … Read more

On Relaxation of Some Customized Proximal Point Algorithms for Convex Minimization: From Variational Inequality Perspective

The proximal point algorithm (PPA) is a fundamental method for convex programming. When PPA applied to solve linearly constrained convex problems, we may prefer to choose an appropriate metric matrix to define the proximal regularization, so that the computational burden of the resulted PPA can be reduced, and in most cases, even admit closed form … Read more

Symmetric ADMM with Positive-Indefinite Proximal Regularization for Linearly Constrained Convex Optimization

The proximal ADMM which adds proximal regularizations to ADMM’s subproblems is a popular and useful method for linearly constrained separable convex problems, especially its linearized case. A well-known requirement on guaranteeing the convergence of the method in the literature is that the proximal regularization must be positive semidefinite. Recently it was shown by He et … Read more

Convergence Study on the Proximal Alternating Direction Method with Larger Step Size

The alternating direction method of multipliers (ADMM) is a popular method for the separable convex programming with linear constraints, and the proximal ADMM is its important variant. Previous studies show that the relaxation factor $\gamma\in (0, \frac{1+\sqrt{5}}{2})$ by Fortin and Glowinski for the ADMM is also valid for the proximal ADMM. In this paper, we … Read more

Positive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-block Separable Convex Minimization Problems

The augmented Lagrangian method (ALM) is fundamental for solving convex programming problems with linear constraints. The proximal version of ALM, which regularizes ALM’s subproblem over the primal variable at each iteration by an additional positive-definite quadratic proximal term, has been well studied in the literature. In this paper, we show that it is not necessary … Read more

Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming

The alternating direction method of multipliers (ADMM) is being widely used for various convex minimization models with separable structures arising in a variety of areas. In the literature, the proximalversion of ADMM which allows ADMM’s subproblems to be proximally regularized has been well studied. Particularly the linearized version of ADMM can be yielded when the … Read more

An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems

The primal-dual hybrid gradient method (PDHG) originates from the Arrow-Hurwicz method, and it has been widely used to solve saddle point problems, particularly in image processing areas. With the introduction of a combination parameter, Chambolle and Pock proposed a generalized PDHG scheme with both theoretical and numerical advantages. It has been analyzed that except for … Read more

On the Step Size of Symmetric Alternating Directions Method of Multipliers

The alternating direction method of multipliers (ADMM) is an application of the Douglas-Rachford splitting method; and the symmetric version of ADMM which updates the Lagrange multiplier twice at each iteration is an application of the Peaceman-Rachford splitting method. Sometimes the symmetric ADMM works empirically; but theoretically its convergence is not guaranteed. It was recently found … Read more