Inexact Bundle Methods for Two-Stage Stochastic Programming

Stochastic programming problems arise in many practical situations. In general, the deterministic equivalents of these problems can be very large and may not be solvable directly by general-purpose optimization approaches. For the particular case of two-stage stochastic programs, we consider decomposition approaches akin to a regularized L-shaped method that can handle inexactness in the subproblem … Read more

Transmission Expansion Planning with Re-design

Expanding an electrical transmission network requires heavy investments that need to be carefully planned, often at a regional or national level. We study relevant theoretical and practical aspects of transmission expansion planning, set as a bilinear programming problem with mixed 0-1 variables. We show that the problem is NP-hard and that, unlike the so-called Network … Read more

Composite Proximal Bundle Method

We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient … Read more

A Redistributed Proximal Bundle Method for Nonconvex Optimization

Proximal bundle methods have been shown to be highly successful optimization methods for unconstrained convex problems with discontinuous first derivatives. This naturally leads to the question of whether proximal variants of bundle methods can be extended to a nonconvex setting. This work proposes an approach based on generating cutting-planes models, not of the objective function … Read more

Risk averse feasible policies for large-scale multistage stochastic linear programs

We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rolling-horizon time consistent policy. … Read more

Optimal Scenario Tree Reduction for Stochastic Streamflows in Power Generation Planning Problems

The mid-term operation planning of hydro-thermal power systems needs a large number of synthetic sequences to represent accurately stochastic streamflows. These sequences are generated by a periodic autoregressive model. If the number of synthetic sequences is too big, the optimization planning problem may be too difficult to solve. To select a small set of sequences … Read more

Optimization of Real Asset Portfolio using a Coherent Risk Measure: Application to Oil and Energy Industries

In many industries, investment is part of the most important planning decisions. In past decades, mathematical programming models have been widely used in capacity planning and facility location to support investment decisions. Such initial techniques evolved to the use of enterprise portfolio management, very common in the energy industry. Increasing concern on risk made of … Read more

Consideration of Gas Supply Contracts with Take-or-pay Clauses in the Brazilian Long-term Energy Planning

In Brazil’s long-term energy planning, the dispatch of thermal plants usually varies along a year. Such variation is essentially due to the predominance of the hydraulic mix in the system electric energy supply. For this reason, without preventive measures, a highly irregular cash flow occurs for natural gas (NG) providers, who supply gas for electric … Read more

Incremental-like Bundle Methods with Application to Energy Planning

An important field of application of non-smooth optimization refers to decomposition of large-scale or complex problems by Lagrangian duality. In this setting, the dual problem consists in maximizing a concave non-smooth function that is defined as the sum of sub-functions. The evaluation of each sub-function requires solving a specific optimization sub-problem, with specific computational complexity. … Read more

Dynamic Subgradient Methods

Lagrangian relaxation is commonly used to generate bounds for mixed-integer linear programming problems. However, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization is no longer possible. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically … Read more