A unified analysis of descent sequences in weakly convex optimization, including convergence rates for bundle methods

We present a framework for analyzing convergence and local rates of convergence of a class of descent algorithms, assuming the objective function is weakly convex. The framework is general, in the sense that it combines the possibility of explicit iterations (based on the gradient or a subgradient at the current iterate), implicit iterations (using a … Read more

Robot Dance: a mathematical optimization platform for intervention against Covid-19 in a complex network

Robot Dance is a computational platform developed in response to the coronavirus outbreak, to support the decision making on public policies at a regional level. The tool is suitable for understanding and suggesting levels of intervention needed to contain the spread of diseases when the mobility of inhabitants through a regional network is a concern. … Read more

Analysis of Energy Markets Modeled as Equilibrium Problems with Equilibrium Constraints

Equilibrium problems with equilibrium constraints are challenging both theoretically and computationally. However, they are suitable/adequate modeling formulations in a number of important areas, such as energy markets, transportation planning, and logistics. Typically, these problems are characterized as bilevel Nash-Cournot games. For instance, determin- ing the equilibrium price in an energy market involves top-level decisions of … Read more


We examine how different pricing frameworks deal with nonconvex features typical of day-ahead energy prices when the power system is hydro-dominated, like in Brazil. For the system operator, requirements of minimum generation translate into feasibility issues that are fundamental to carry the generated power through the network. When utilities are remunerated at a price depending … Read more

Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according to some criterion that balances supply and demand. The objective function of the market coordinator involves the decisions of many … Read more

Revisiting Augmented Lagrangian Duals

For nonconvex optimization problems, possibly having mixed-integer variables, a convergent primal-dual solution algorithm is proposed. The approach applies a proximal bundle method to certain augmented Lagrangian dual that arises in the context of the so-called generalized augmented Lagrangians. We recast these Lagrangians into the framework of a classical Lagrangian, by means of a special reformulation … Read more

A Regularized Smoothing Method for Fully Parameterized Convex Problems with Applications to Convex and Nonconvex Two-Stage Stochastic Programming

We present an approach to regularize and approximate solution mappings of parametric convex optimization problems that combines interior penalty (log-barrier) solutions with Tikhonov regularization. Because the regularized mappings are single-valued and smooth under reasonable conditions, they can be used to build a computationally practical smoothing for the associated optimal value function. The value function in … Read more

Quantifying the value of flexibility: demand response versus storage

Intermittent sources of energy represent a challenge for electrical networks, particularly regarding demand satisfaction at peak times. Energy management tools such as load shaving or storage systems can be used to mitigate abrupt variations in the network.The value of different mechanisms to move energy through time is determined by a multi-objective programming approach, that aims … Read more

Stochastic Hydro-thermal Unit Commitment via Multi-level Scenario Trees and Bundle Regularization

For an electric power mix subject to uncertainty, the stochastic unit-commitment problem finds short-term optimal generation schedules that satisfy several system-wide constraints. In regulated electricity markets, this very practical and important problem is used by the system operator to decide when each unit is to be started or stopped, and to define how to generate … Read more

Probabilistic optimization via approximate p-efficient points and bundle methods

For problems when decisions are taken prior to observing the realization of underlying random events, probabilistic constraints are an important modelling tool if reliability is a concern. A key concept to numerically dealing with probabilistic constraints is that of p-efficient points. By adopting a dual point of view, we develop a solution framework that includes … Read more