Utility Preference Robust Optimization with Moment-Type Information Structure

Utility preference robust optimization (PRO) models are recently proposed to deal with decision making problems where the decision maker’s true utility function is unknown and the optimal decision is based on the worst case utility function from an ambiguity set of utility functions. In this paper, we consider the case where the ambiguity set is … Read more

Statistical Robustness in Utility Preference Robust Optimization Models

Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in the PRO models is that the true probability distribution is either known … Read more

Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more

Stability Analysis for Mathematical Programs with Distributionally Robust Chance Constraint

Stability analysis for optimization problems with chance constraints concerns impact of variation of probability measure in the chance constraints on the optimal value and optimal solutions and research on the topic has been well documented in the literature of stochastic programming. In this paper, we extend such analysis to optimization problems with distributionally robust chance … Read more