Sparse Principal Component Analysis with Non-Oblivious Adversarial Perturbations

Sparse Principal Component Analysis (sparse PCA) is a fundamental dimension-reduction tool that enhances interpretability in various high-dimensional settings. An important variant of sparse PCA studies the scenario when samples are adversarially perturbed. Notably, most existing statistical studies on this variant focus on recovering the ground truth and verifying the robustness of classical algorithms when the … Read more

DeLuxing: Deep Lagrangian Underestimate Fixing for Column-Generation-Based Exact Methods

In this paper, we propose an innovative variable fixing strategy called deep Lagrangian underestimate fixing (DeLuxing). It is a highly effective approach for removing unnecessary variables in column-generation (CG)-based exact methods used to solve challenging discrete optimization problems commonly encountered in various industries, including vehicle routing problems (VRPs). DeLuxing employs a novel linear programming (LP) … Read more

An exact price-cut-and-enumerate method for the capacitated multi-trip vehicle routing problem with time windows

We consider the capacitated multi-trip vehicle routing problem with time windows (CMTVRPTW), where vehicles are allowed to make multiple trips. The ability to perform multiple trips is necessary for some real-world applications where the vehicle capacity, the trip duration, or the number of drivers or vehicles is limited. However, it substantially increases the solution difficulty … Read more