The Integrated Last-Mile Transportation Problem

Last-mile transportation (LMT) refers to any service that moves passengers from a hub of mass transportation (MT), such as air, boat, bus, or train, to destinations, such as a home or an office. In this paper, we introduce the problem of scheduling passengers jointly on MT and LMT services, with passengers sharing a car, van, … Read more

A new approximation algorithm for unrelated parallel machine scheduling problem with release dates

In this research, we consider the unrelated parallel machine scheduling problem with release dates. The goal of this scheduling problem is to find an optimal job assignment with minimal sum of weighted completion times. As it is demonstrated in the present paper, this problem is NP-hard in the strong sense. Albeit the computational complexity, which … Read more

Staircase Compatibility and its Applications in Scheduling and Piecewise Linearization

We consider the clique problem with multiple-choice constraints (CPMC) and characterize a case where it is possible to give an efficient description of the convex hull of its feasible solutions. This new special case, which we call staircase compatibility, generalizes common properties in several applications and allows for a linear description of the integer feasible … Read more

The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph

The clique problem with multiple-choice constraints (CPMC) represents a very common substructure in many real-world applications, for example scheduling problems with precedence constraints. It consists in finding a clique in a graph whose nodes are partitioned into subsets, such that exactly one node from each subset is chosen. Even though we can show that (CPMC) … Read more

Resilient Course and Instructor Scheduling in the Mathematics Department at the United States Naval Academy

In this work, we study the problem of scheduling courses and instructors in the Mathematics Department at the United States Naval Academy (USNA) in a resilient manner. Every semester, the department needs to schedule around 70 instructors and 150-180 course sections into 30 class periods and 30 rooms. We formulate a stochastic integer linear program … Read more

The Gamut and Time Arrow of Automated Nurse Rostering

There is an undeniable global shortage of skillful nurses. This is a problem of high priority, which is correlated to workforce management issues. These issues can be palliated by increasing nurses’ satisfaction based on flexible rosters using automated nurse rostering. This paper in concerned with nurse rostering based on constraint programming by satisfying global constraints, … Read more

Benders decomposition of the resource constrained project scheduling problem

Problem instances found in the literature that are used in computational studies of the resource constrained project scheduling problem, typically include only a few resources. In some practical applications, however, the number of resources may be significantly higher. In this paper, problem instances with a large number of resources are considered and a Benders decomposition … Read more

Exploiting Identical Generators in Unit Commitment

We present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in … Read more

The job shop scheduling problem with convex costs

The job shop scheduling literature has been dominated by a focus on regular objective functions — in particular the makespan — in its half a century long history. The last twenty years have encountered a spike of interest in other objectives, such as the total weighted tardiness, but research on non-regular objective functions has always … Read more

A Mixed Integer Programming Model to Analyse and Optimise Patient Flow in a Surgical Suite.

Demand for healthcare services is growing rapidly in Australia and across the world, and rising healthcare expenditure is increasing pressure on sustainability of government-funded healthcare systems. In Australia, elective surgery waiting lists are growing and hospitals are struggling with a capacity shortage. To keep up with the rising demand, we need to be more efficient … Read more