LASSO-Patternsearch Algorithm with Application to Ophthalmology and Genomic Data

The LASSO-Patternsearch algorithm is proposed as a two-step method to identify clusters or patterns of multiple risk factors for outcomes of interest in demographic and genomic studies. The predictor variables are dichotomous or can be coded as dichotomous. Many diseases are suspected of having multiple interacting risk factors acting in concert, and it is of … Read more

Limiting behavior and analyticity of weighted central paths in semidefinite programming

In this paper we analyze the limiting behavior of infeasible weighted central paths in semidefinite programming under the assumption that a strictly complementary solution exists. We show that the paths associated with the “square root” symmetrization of the weighted centrality condition are analytic functions of the barrier parameter $\mu$ even at $\mu=0$ if and only … Read more

An Information Geometric Approach to Polynomial-time Interior-point Algorithms: Complexity Bound via Curvature Integral

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. Information geometry is a differential geometric framework which has been successfully applied to statistics, learning theory, signal processing etc. We consider information geometric structure for conic linear programs introduced by self-concordant barrier functions, and develop a precise iteration-complexity estimate of the polynomial-time … Read more

What Shape is your Conjugate? A Survey of Computational Convex Analysis and its Applications

Computational Convex Analysis algorithms have been rediscovered several times in the past by researchers from different fields. To further communications between practitioners, we review the field of Computational Convex Analysis, which focuses on the numerical computation of fundamental transforms arising from convex analysis. Current models use symbolic, numeric, and hybrid symbolic-numeric algorithms. Our objective is … Read more

Nonsmooth Optimization for Production Theory

Production theory needs generalizations so that it can incorporate broader class of production functions. A generalized Hotelling’s lemma and a generalized Shephard’s lemma in economic theory, which are established in virtue of nonsmooth analysis under the assumption of upper semicontinuity on production functions. Continuity of factor inputs with respect to a change of the factor … Read more

Robust Efficient Frontier Analysis with a Separable Uncertainty Model

Mean-variance (MV) analysis is often sensitive to model mis-specification or uncertainty, meaning that the MV efficient portfolios constructed with an estimate of the model parameters (i.e., the expected return vector and covariance of asset returns) can give very poor performance for another set of parameters that is similar and statistically hard to distinguish from the … Read more

Generating set search methods for piecewise smooth problems

We consider a direct search approach for solving nonsmooth minimization problems where the objective function is locally Lipschitz continuous and piecewise continuously differentiable on a finite family of polyhedra. A generating set search method is proposed, which is named “structured” because the structure of the set of nondifferentiability near the current iterate is exploited to … Read more

A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

This paper concerns a fractional function of the form $x^Ta/\sqrt{x^TBx}$, where $B$ is positive definite. We consider the game of choosing $x$ from a convex set, to maximize the function, and choosing $(a,B)$ from a convex set, to minimize it. We prove the existence of a saddle point and describe an efficient method, based on … Read more

Controlling the dose distribution with gEUD-type constraints within the convex IMRT optimization framework

Radiation therapy is an important modality in treating various cancers. Various treatment planning and delivery technologies have emerged to support Intensity Modulated Radiation Therapy (IMRT), creating significant opportunities to advance this type of treatment. We investigate the possibility of including the dose prescription, specified by the DVH, within the convex optimization framework for inverse IMRT … Read more

Support Vector Regression for imprecise data

In this work, a regression problem is studied where the elements of the database are sets with certain geometrical properties. In particular, our model can be applied to handle data affected by some kind of noise or uncertainty and interval-valued data, and databases with missing values as well. The proposed formulation is based on the … Read more