An echelon form of weakly infeasible semidefinite programs and bad projections of the psd cone

A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has nearly feasible solutions that approximate the constraint set to arbitrary precision. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to “bad” linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe … Read more

Iteration complexity analysis of a partial LQP-based alternating direction method of multipliers

In this paper, we consider a prototypical convex optimization problem with multi-block variables and separable structures. By adding the Logarithmic Quadratic Proximal (LQP) regularizer with suitable proximal parameter to each of the first grouped subproblems, we develop a partial LQP-based Alternating Direction Method of Multipliers (ADMM-LQP). The dual variable is updated twice with relatively larger … Read more

Equipping Barzilai-Borwein method with two dimensional quadratic termination property

A new gradient stepsize is derived at the motivation of equipping the Barzilai-Borwein (BB) method with two dimensional quadratic termination property. A remarkable feature of the new stepsize is that its computation only depends on the BB stepsizes in previous iterations without the use of exact line searches and Hessian, and hence it can easily … Read more

Convergence of Proximal Gradient Algorithm in the Presence of Adjoint Mismatch

We consider the proximal gradient algorithm for solving penalized least-squares minimization problems arising in data science. This first-order algorithm is attractive due to its flexibility and minimal memory requirements allowing to tackle large-scale minimization problems involving non-smooth penalties. However, for problems such as X-ray computed tomography, the applicability of the algorithm is dominated by the … Read more

Tight bounds on the maximal perimeter and the maximal width of convex small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ vertices are not known when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ and $s\ge 3$, and show that the perimeters and the widths obtained … Read more

New efficient approach in finding a zero of a maximal monotone operator

In the paper, we provide a new efficient approach to find a zero of a maximal monotone operator under very mild assumptions. Using a regularization technique and the proximal point algorithm, we can construct a sequence that converges strongly to a solution with at least linear convergence rate. ArticleDownload View PDF

Generalized Self-Concordant Analysis of Frank-Wolfe algorithms

Projection-free optimization via different variants of the Frank-Wolfe (FW) method has become one of the cornerstones in large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant (GSC) functions do not necessarily feature a Lipschitz continuous gradient, nor are … Read more

On the linear convergence of the forward-backward splitting algorithm

In this paper, we establish a linear convergence result for the forward-backward splitting algorithm in the finding a zero of the sum of two maximal monotone operators, where one of them is set-valued strongly monotone and the other is Lipschitz continuous. We show that our convergence rate is better than Douglas–Rachford splitting algorithm’s rate used … Read more

Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a … Read more

On strong duality, theorems of the alternative, and projections in conic optimization

A conic program is the problem of optimizing a linear function over a closed convex cone intersected with an affine preimage of another cone. We analyse three constraint qualifications, namely a Closedness CQ, Slater CQ, and Boundedness CQ (also called Clark- Duffin theorem), that are sufficient for achieving strong duality and show that the first … Read more