Cardinality Minimization, Constraints, and Regularization: A Survey

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and … Read more

A family of multi-parameterized proximal point algorithms

In this paper, a multi-parameterized proximal point algorithm combining with a relaxation step is developed for solving convex minimization problem subject to linear constraints. We show its global convergence and sublinear convergence rate from the prospective of variational inequality. Preliminary numerical experiments on testing a sparse minimization problem from signal processing indicate that the proposed … Read more

Accelerated Symmetric ADMM and Its Applications in Signal Processing

The alternating direction method of multipliers (ADMM) were extensively investigated in the past decades for solving separable convex optimization problems. Fewer researchers focused on exploring its convergence properties for the nonconvex case although it performed surprisingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration techniques for a family of potentially … Read more

Convex optimization problems involving finite autocorrelation sequences

We discuss convex optimization problems where some of the variables are constrained to be finite autocorrelation sequences. Problems of this form arise in signal processing and communications, and we describe applications in filter design and system identification. Autocorrelation constraints in optimization problems are often approximated by sampling the corresponding power spectral density, which results in … Read more

Handling Nonnegative Constraints in Spectral Estimation

We consider convex optimization problems with the constraint that the variables form a finite autocorrelation sequence, or equivalently, that the corresponding power spectral density is nonnegative. This constraint is often approximated by sampling the power spectral density, which results in a set of linear inequalities. It can also be cast as a linear matrix inequality … Read more