On Compact Formulations for Integer Programs Solved by Column Generation

Column generation has become a powerful tool in solving large scale integer programs. We argue that most of the often reported compatibility issues between pricing oracle and branching rules disappear when branching decisions are based on the reduction of the variables of the oracle’s domain. This can be generalized to branching on variables of a … Read more

Selected Topics in Column Generation

Dantzig-Wolfe decomposition and column generation, devised for linear programs, is a success story in large scale integer programming. We outline and relate the approaches, and survey mainly recent contributions, not found in textbooks, yet. We emphasize on the growing understanding of the dual point of view, which brought considerable progress to the column generation theory … Read more

Integrating design and production planning considerations in multi-bay manufacturing facility layout

This paper develops a new mathematical model that integrates layout design and production planning to prescribe efficient multi-bay manufacturing facilities. The model addresses the need to distribute department replicas throughout the facility and extends the use of product and process requirements as problem parameters in order to increase process routing flexibility. In addition, the model … Read more

Transparent optical network design with sparse wavelength conversion

We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse … Read more

Facets of a polyhedron closely related to the integer knapsack-cover problem

We investigate the polyhedral structure of an integer program with a single functional constraint: the integer capacity-cover polyhedron. Such constraints arise in telecommunications planning and facility location applications, and feature the use of general integer (rather than just binary) variables. We derive a large class of facet-defining inequalities by using an augmenting technique that builds … Read more

Safe bounds in linear and mixed-integer programming

Current mixed-integer linear programming solvers are based on linear programming routines that use floating point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. It is shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in … Read more

Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer Programming

We present a heuristic method for general 0-1 mixed integer programming, intended for eventual incorporation into parallel branch-and-bound methods for solving such problems exactly. The core of the heuristic is a rounding method based on simplex pivots, employing only gradient information, for a strictly concave, differentiable merit function measuring integer feasibility. When local minima of … Read more

A Mixed Integer Disjunctive Model for Transmission Network Expansion

The classical non-linear mixed integer formulation of the transmission network expansion problem cannot guarantee finding the optimal solution due to its non-convex nature. We propose an alternative mixed integer linear disjunctive formulation, which has better conditioning properties than the standard disjunctive model. The mixed integer program is solved by a commercial Branch and Bound code, … Read more

A Family of Facets for the p-Median Polytope

We present a nontrivial family of facet-defining inequalities for the p-median polytope. We incorporate the inequalities in a branch-and-cut scheme, and we report computational results that demonstrate their effectiveness. CitationDepartment of Industrial Engineering, State University of New York at Buffalo, submittedArticleDownload View PDF