On the Complexity of Finding Locally Optimal Solutions in Bilevel Linear Optimization

\(\) We consider the theoretical computational complexity of finding locally optimal solutions to bilevel linear optimization problems (BLPs), from the leader’s perspective. We show that, for any constant \(c > 0\), the problem of finding a leader’s solution that is within Euclidean distance \(c^n\) of any locally optimal leader’s solution, where \(n\) is the total … Read more

BOBILib: Bilevel Optimization (Benchmark) Instance Library

In this report, we present the BOBILib, a collection of more than 2500~instances of mixed integer linear bilevel optimization problems. The goal of this library is to make a large and well-curated set of test instances freely available for the research community so that new and existing algorithms in bilevel optimization can be tested and … Read more

On the Relationship Between the Value Function and the Efficient Frontier of a Mixed Integer Linear Optimization Problem

In this study, we investigate the connection between the efficient frontier (EF) of a general multiobjective mixed integer linear optimization problem (MILP) and the so-called restricted value function (RVF) of a closely related single-objective MILP. In the first part of the paper, we detail the mathematical structure of the RVF, including characterizing the set of … Read more

On the Complexity of Inverse Mixed Integer Linear Optimization

Inverse optimization is the problem of determining the values of missing input parameters that are closest to given estimates and that will make a given solution optimal. This study is concerned with the relationship of a particular inverse mixed integer linear optimization problem (MILPs) to both the original problem and the separation problem associated with … Read more

Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems

Despite the success of branch-and-cut methods for solving mixed integer bilevel linear optimization problems (MIBLPs) in practice, there have remained some gaps in the theory surrounding these methods. In this paper, we take a first step towards laying out a theory of valid inequalities and cutting-plane methods for MIBLPs that parallels the existing theory for … Read more

Mixed Integer Bilevel Optimization with k-optimal Follower: A Hierarchy of Bounds

We consider mixed integer bilevel linear optimization problems in which the decision variables of the lower-level (follower’s) problem are all binary. We propose a general modeling and solution framework motivated by the practical reality that in a Stackelberg game, the follower does not always solve their optimization problem to optimality. They may instead implement a … Read more

A Unified Framework for Multistage and Multilevel Mixed Integer Linear Optimization

We introduce a unified framework for the study of multilevel mixed integer linear optimization problems and multistage stochastic mixed integer linear optimization problems with recourse. The framework highlights the common mathematical structure of the two problems and allows for the development of a common algorithmic framework. Focusing on the two-stage case, we investigate, in particular, … Read more

A Framework for Generalized Benders’ Decomposition and Its Application to Multilevel Optimization

We describe an algorithmic framework generalizing the well-known framework originally introduced by Benders. We apply this framework to several classes of optimization problems that fall under the broad umbrella of multilevel/multistage mixed integer linear optimization problems. The development of the abstract framework and its application to this broad class of problems provides new insights and … Read more

Assessing the Effectiveness of (Parallel) Branch-and-bound Algorithms

Empirical studies are fundamental in assessing the effectiveness of implementations of branch-and-bound algorithms. The complexity of such implementations makes empirical study difficult for a wide variety of reasons. Various attempts have been made to develop and codify a set of standard techniques for the assessment of optimization algorithms and their software implementations; however, most previous … Read more

MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library

We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of 5,721 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, these sets were compiled using … Read more