A Single Time-Scale Stochastic Approximation Method for Nested Stochastic Optimization

We study constrained nested stochastic optimization problems in which the objective function is a composition of two smooth functions whose exact values and derivatives are not available. We propose a single time-scale stochastic approximation algorithm, which we call the Nested Averaged Stochastic Approximation (NASA), to find an approximate stationary point of the problem. The algorithm … Read more

Process-Based Risk Measures for Observable and Partially Observable Discrete-Time Controlled Systems

For controlled discrete-time stochastic processes we introduce a new class of dynamic risk measures, which we call process-based. Their main features are that they measure risk of processes that are functions of the history of the base process. We introduce a new concept of conditional stochastic time consistency and we derive the structure of process-based … Read more

Risk-Averse Control of Undiscounted Transient Markov Models

We use Markov risk measures to formulate a risk-averse version of the undiscounted total cost problem for a transient controlled Markov process. We derive risk-averse dynamic programming equations and we show that a randomized policy may be strictly better than deterministic policies, when risk measures are employed. We illustrate the results on an optimal stopping … Read more

Common Mathematical Foundations of Expected Utility and Dual Utility Theories

We show that the main results of the expected utility and dual utility theories can be derived in a unified way from two fundamental mathematical ideas: the separation principle of convex analysis, and integral representations of continuous linear functionals from functional analysis. Our analysis reveals the dual character of utility functions. We also derive new … Read more

Risk-Averse Control of Undiscounted Transient Markov Models

We use Markov risk measures to formulate a risk-averse version of the undiscounted total cost problem for a transient controlled Markov process. We derive risk-averse dynamic programming equations and we show that a randomized policy may be strictly better than deterministic policies, when risk measures are employed. We illustrate the results on an optimal stopping … Read more

A Multi-Product Risk-Averse Newsvendor with Exponential Utility Function

We consider a multi-product newsvendor using an exponential utility function. We first establish a few basic properties for the newsvendor regarding the convexity of the model and monotonicity of the impact of risk aversion on the solution. When the product demands are independent and the ratio of the degree of risk aversion to the number … Read more

Scenario decomposition of risk-averse multistage stochastic programming problems

For a risk-averse multistage stochastic optimization problem with a finite scenario tree, we introduce a new scenario decomposition method and we prove its convergence. The method is applied to a risk-averse inventory and assembly problem. In addition, we develop a partially regularized bundle method for nonsmooth optimization. CitationRUTCOR, Rutgers University, Piscataway, NJ 08854ArticleDownload View PDF

Kusuoka Representation of Higher Order Dual Risk Measures

We derive representations of higher order dual measures of risk in $\mathcal{L}^p$ spaces as suprema of integrals of Average Values at Risk with respect to probability measures on $(0,1]$ (Kusuoka representations). The suprema are taken over convex sets of probability measures. The sets are described by constraints on the dual norms of certain transformations of … Read more

Risk-Averse Dynamic Programming for Markov Decision Processes

We introduce the concept of a Markov risk measure and we use it to formulate risk-averse control problems for two Markov decision models: a finite horizon model and a discounted infinite horizon model. For both models we derive risk-averse dynamic programming equations and a value iteration method. For the infinite horizon problem we also develop … Read more

A Multi-Product Risk-Averse Newsvendor with Law Invariant Coherent Measures of Risk

We consider a multi-product newsvendor under the law-invariant coherent risk measures. We first establish a few fundamental properties of the model regarding the convexity of the problem, the symmetry of the solution and the impact of risk aversion. Specifically, we show that for identical products with independent demands, increased risk aversion leads to decreased orders. … Read more