A polynomial projection algorithm for linear programming

We propose a polynomial algorithm for linear programming. The algorithm represents a linear optimization or decision problem in the form of a system of linear equations and non-negativity constraints. Then it uses a procedure that either fi nds a solution for the respective homogeneous system or provides the information based on which the algorithm rescales the … Read more

Some preconditioners for systems of linear inequalities

We show that a combination of two simple preprocessing steps would generally improve the conditioning of a homogeneous system of linear inequalities. Our approach is based on a comparison among three different but related notions of conditioning for linear inequalities. Article Download View Some preconditioners for systems of linear inequalities

Updating LU Factors of LP Simplex Bases

Methods for updating the LU factors of simplex basis matrices are reviewed. An alternative derivation of the Fletcher and Matthews method is given. This leads to generalizations of their method which avoids problems with both the Bartels and Golub method and the Fletcher and Matthews method. The improvements are to both numerical stability and data … Read more

Which Nonnegative Matrices Are Slack Matrices?

In this paper we characterize the slack matrices of cones and polytopes among all nonnegative matrices. This leads to an algorithm for deciding whether a given matrix is a slack matrix. The underlying decision problem is equivalent to the polyhedral verifi cation problem whose complexity is unknown. Citation April 2013 Article Download View Which Nonnegative Matrices … Read more

Computational aspects of simplex and MBU-simplex algorithms using different anti-cycling pivot rules

Several variations of index selection rules for simplex type algorithms for linear programming, like the Last-In-First-Out or the Most-Often-Selected-Variable are rules not only theoretically finite, but also provide significant flexibility in choosing a pivot element. Based on an implementation of the primal simplex and the monotonic build-up (MBU) simplex method, the practical benefit of the … Read more

Robust Near-Separable Nonnegative Matrix Factorization Using Linear Optimization

Nonnegative matrix factorization (NMF) has been shown recently to be tractable under the separability assumption, under which all the columns of the input data matrix belong to the convex cone generated by only a few of these columns. Bittorf, Recht, R\’e and Tropp (`Factoring nonnegative matrices with linear programs’, NIPS 2012) proposed a linear programming … Read more

Novel update techniques for the revised simplex method

This paper introduces three novel techniques for updating the invertible representation of the basis matrix when solving practical sparse linear programming (LP) problems using a high performance implementation of the dual revised simplex method, being of particular value when suboptimization is used. Two are variants of the product form update and the other permits multiple … Read more

Calmness modulus of linear semi-infinite programs

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide … Read more

Robustness Analysis of HottTopixx, a Linear Programming Model for Factoring Nonnegative Matrices

Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is separable (that is, there exists a cone spanned by a small subset of the columns containing all columns). Since then, several algorithms have been designed to … Read more