A Semidefinite Programming Approach for the Nearest Correlation Matrix Problem

The nearest \cm\ problem is to find a positive semidefinite matrix with unit diagonal that is nearest in the Frobenius norm to a given symmetric matrix $A$. This problem can be formulated as an optimization problem with a quadratic objective function and semidefinite programming constraints. Using such a formulation, we derive and test a primal-dual … Read more

A Comparative Study of New Barrier Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization

Recently, so-called self-regular barrier functions for primal-dual interior-point methods (IPMs) for linear optimization were introduced. Each such barrier function is determined by its (univariate) self-regular kernel function. We introduce a new class of kernel functions. The class is defined by some simple conditions on the kernel function and its derivatives. These properties enable us to … Read more

The structured distance to ill-posedness for conic systems

An important measure of conditioning of a conic linear system is the size of the smallest structured perturbation making the system ill-posed. We show that this measure is unchanged if we restrict to perturbations of low rank. We thereby derive a broad generalization of the classical Eckart-Young result characterizing the distance to ill-posedness for a … Read more

ON THE LIMITING PROPERTIES OF THE AFFINE-SCALING DIRECTIONS

We study the limiting properties of the affine-scaling directions for linear programming problems. The worst-case angle between the affine-scaling directions and the objective function vector provides an interesting measure that has been very helpful in convergence analyses and in understanding the behaviour of various interior-point algorithms. We establish new relations between this measure and some … Read more

Strengthened Existence and Uniqueness Conditions for Search Directions in Semidefinite Programming

Primal-dual interior-point (p-d i-p) methods for Semidefinite Programming (SDP) are generally based on solving a system of matrix equations for a Newton type search direction for a symmetrization of the optimality conditions. These search directions followed the derivation of similar p-d i-p methods for linear programming (LP). Among these, a computationally interesting search direction is … Read more

Limiting behavior of the Alizadeh-Haeberly-Overton weighted paths in semidefinite programming

This paper studies the limiting behavior of weighted infeasible central paths for semidefinite programming obtained from centrality equations of the form $X S + SX = 2 \nu W$, where $W$ is a fixed positive definite matrix and $\nu>0$ is a parameter, under the assumption that the problem has a strictly complementary primal-dual optimal solution. … Read more

Asymptotic behavior of the central path for a special class of degenerate SDP problems

This paper studies the asymptotic behavior of the central path $(X(\nu),S(\nu),y(\nu))$ as $\nu \downarrow 0$ for a class of degenerate semidefinite programming (SDP) problems, namely those that do not have strictly complementary primal-dual optimal solutions and whose “degenerate diagonal blocks” $X_{\cT}(\nu)$ and $S_{\cT}(\nu)$ of the central path are assumed to satisfy $\max\{ \|X_{\cT}(\nu)\|, \|S_{\cT}(\nu)\| \} … Read more

On Semidefinite Programming Relaxations for the Satisfiability Problem

This paper is concerned with the analysis and comparison of semidefinite programming (SDP) relaxations for the satisfiability (SAT) problem. Our presentation is focussed on the special case of 3-SAT, but the ideas presented can in principle be extended to any instance of SAT specified by a set of boolean variables and a propositional formula in … Read more

Error bounds and limiting behavior of weighted paths associated with the SDP map ^{1/2}SX^{1/2}$

This paper studies the limiting behavior of weighted infeasible central paths for semidefinite programming obtained from centrality equations of the form $X^{1/2}S X^{1/2} = \nu W$, where $W$ is a fixed positive definite matrix and $\nu>0$ is a parameter, under the assumption that the problem has a strictly complementary primal-dual optimal solution. It is shown … Read more

Calculation of universal barrier functions for cones generated by Chebyshev systems over finite sets

We explicitly calculate universal barrier functions for cones generated by (weakly) Chebyshev systems over finite sets. We show that universal barrier functions corresponding to Chebyshev systems on intervals are obtained as limits of universal barrier functions of their discretizations. The results are heavily rely upon classical work of M. Krein, A. Nudelman and I.J. Schoenberg … Read more