Centered Solutions for Uncertain Linear Equations

Our contribution is twofold. Firstly, for a system of uncertain linear equations where the uncertainties are column-wise and reside in general convex sets, we show that the intersection of the set of possible solutions and any orthant is convex. We derive a convex representation of this intersection. Secondly, to obtain centered solutions for systems of … Read more

Near-Optimal Ambiguity sets for Distributionally Robust Optimization

We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an \emph{asymptotically optimal} set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex … Read more

Min-max-min Robust Combinatorial Optimization

The idea of k-adaptability in two-stage robust optimization is to calculate a fixed number k of second-stage policies here-and-now. After the actual scenario is revealed, the best of these policies is selected. This idea leads to a min-max-min problem. In this paper, we consider the case where no first stage variables exist and propose to … Read more

A Distributionally-robust Approach for Finding Support Vector Machines

The classical SVM is an optimization problem minimizing the hinge losses of mis-classified samples with the regularization term. When the sample size is small or data has noise, it is possible that the classifier obtained with training data may not generalize well to pop- ulation, since the samples may not accurately represent the true population … Read more

Robust optimization with ambiguous stochastic constraints under mean and dispersion information

In this paper we consider ambiguous stochastic constraints under partial information consisting of means and dispersion measures of the underlying random parameters. Whereas the past literature used the variance as the dispersion measure, here we use the mean absolute deviation from the mean (MAD). This makes it possible to use the old result of Ben-Tal … Read more

Distributionally Robust Optimization with Matrix Moment Constraints: Lagrange Duality and Cutting Plane Methods

A key step in solving minimax distributionally robust optimization (DRO) problems is to reformulate the inner maximization w.r.t. probability measure as a semiinfinite programming problem through Lagrange dual. Slater type conditions have been widely used for zero dual gap when the ambiguity set is defined through moments. In this paper, we investigate effective ways for … Read more

Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity

In this paper, we develop a risk-averse two-stage stochastic program (RTSP) which explicitly incorporates the distributional ambiguity covering both discrete and continuous distributions. Starting from a set of historical data samples, we construct a confidence set for the ambiguous probability distribution through nonparametric statistical estimation of its density function. We then formulate RTSP from the … Read more

Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of … Read more

Robust nonlinear optimization via the dual

Robust nonlinear optimization is not as well developed as the linear case, and limited in the constraints and uncertainty sets it can handle. In this work we extend the scope of robust optimization by showing how to solve a large class of robust nonlinear optimization problems. The fascinating and appealing property of our approach is … Read more

K-Adaptability in Two-Stage Distributionally Robust Binary Programming

We propose to approximate two-stage distributionally robust programs with binary recourse decisions by their associated K-adaptability problems, which pre-select K candidate second-stage policies here-and-now and implement the best of these policies once the uncertain parameters have been observed. We analyze the approximation quality and the computational complexity of the K-adaptability problem, and we derive explicit … Read more