Robust and Trend-following Student’s t Kalman Smoothers

Two nonlinear Kalman smoothers are proposed using the Student’s t distribution. The first, which we call the T-Robust smoother, finds the maximum a posteriori (MAP) solution for Gaussian process noise and Student’s t observation noise. It is extremely robust against outliers, outperforming the recently proposed L1-Laplace smoother in extreme situations with data containing 20% or … Read more

Robustifying Convex Risk Measures: A Non-Parametric Approach

We introduce a framework for robustifying portfolio selection problems with respect to ambiguity in the distribution of the random asset losses. In particular, we are interested in convex, version independent risk measures. To robustify these risk measures, we use an ambiguity set which is defined as a neighborhood around a reference probability measure which represents … Read more

Robust counterparts of inequalities containing sums of maxima of linear functions

This paper adresses the robust counterparts of optimization problems containing sums of maxima of linear functions and proposes several reformulations. These problems include many practical problems, e.g. problems with sums of absolute values, and arise when taking the robust counterpart of a linear inequality that is affine in the decision variables, affine in a parameter … Read more

A new robust cycle-based inventory control policy

In this paper, we propose a new robust cycle-based control policy for single installation inventory models with non-stationary uncertain demand. The policy is simple, flexible, easily implementable and preliminary numerical experiments suggest that the policy has very promising empirical performance. The policy can be used both when the excess demand is backlogged as well as … Read more

Robust Rankings for College Football

We investigate the sensitivity of the Colley Matrix (CM) rankings—one of six computer rankings used by the Bowl Championship Series—to (hypothetical) changes in the outcomes of (actual) games. Specifically, we measure the shift in the rankings of the top 25 teams when the win-loss outcome of, say, a single game between two teams, each with … Read more

Robust Network Design: Formulations, Valid Inequalities, and Computations

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks, operators highly overestimate the traffic volume during network planning. In this paper we consider telecommunication network design under traffic uncertainty, adapting the robust optimization approach of Bertsimas and Sim (2004). We present three different mathematical formulations for this problem, provide valid inequalities, … Read more

Improving Robust Rolling Stock Circulation in Rapid Transit Networks

The routing of the rolling stock depends strongly on the rolling stock assignment to di erent opera- tions and the shunting schedule. Therefore, the integration of these decision making is justi ed and is appropriate to introduce robustness in the model. We propose a new approach to obtain better circula- tions of the rolling stock material, solving … Read more

A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined Into One

In this paper, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two linear functions, parallel machine scheduling problems with the … Read more

A comparison of routing sets for robust network design

Designing a network able to route a set of non-simultaneous demand vectors is an important problem arising in telecommunications. The problem can be seen a two-stage robust program where the recourse function consists in choosing the routing for each demand vector. Allowing the routing to change arbitrarily as the demand varies yields a very difficult … Read more

Optimal Job Scheduling with Day-ahead Price and Random Local Distributed Generation: A Two-stage Robust Approach

In this paper, we consider a job scheduling problem with random local generation, in which some jobs must be scheduled day-ahead while the others can be scheduled in a real time fashion. To capture the randomness of the local distributed generation, we develop a two-stage robust optimization model by assuming an uncertainty set without probability … Read more