Inexact FISTA-like Methods with Adaptive Backtracking

Accelerated proximal gradient methods have become a useful tool in large-scale convex optimization, specially for variational regularization with non-smooth priors. Prevailing convergence analysis considers that users can perform the proximal and the gradient steps exactly. Still, in some practical applications, the proximal or the gradient steps must be computed inexactly, which can harm convergence speed … Read more

Global Optimization Algorithm through High-Resolution Sampling

We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev inequality. Our contribution is twofold: on the one hand we propose a global optimization method, which is built on an oracle sampling algorithm producing … Read more

Variants of the A-HPE and large-step A-HPE algorithms for strongly convex problems with applications to accelerated high-order tensor methods

For solving strongly convex optimization problems, we propose and study the global convergence of variants of the A-HPE and large-step A-HPE algorithms of Monteiro and Svaiter. We prove \emph{linear} and the \emph{superlinear} $\mathcal{O}\left(k^{\,-k\left(\frac{p-1}{p+1}\right)}\right)$ global rates for the proposed variants of the A-HPE and large-step A-HPE methods, respectively. The parameter $p\geq 2$ appears in the (high-order) … Read more

Accelerated Inexact Composite Gradient Methods for Nonconvex Spectral Optimization Problems

This paper presents two inexact composite gradient methods, one inner accelerated and another doubly accelerated, for solving a class of nonconvex spectral composite optimization problems. More specifically, the objective function for these problems is of the form f_1 + f_2 + h where f_1 and f_2 are differentiable nonconvex matrix functions with Lipschitz continuous gradients, … Read more