An adaptive relaxation-refinement scheme for multi-objective mixed-integer nonconvex optimization

In this work, we present an algorithm for computing an enclosure for multi-objective mixed-integer nonconvex optimization problems. In contrast to existing solvers for this type of problem, this algorithm is not based on a branch-and-bound scheme but rather relies on a relax-and-refine approach. While this is an established technique in single-objective optimization, several adaptions to … Read more

An Integrated Rolling Horizon and Adaptive-Refinement Approach for Disjoint Trajectories Optimization

Planning of trajectories, i.e. paths over time, is a challenging task. Thereby, the trajectories for involved commodities often have to be considered jointly as separation constraints have to be respected. This is for example the case in robot motion or air traffic management. Involving these discrete separation constraints in the planning of best possible continuous … Read more

Multiscale Concepts for Moving Horizon Optimization

In chemical engineering complex dynamic optimization problems formulated on moving horizons have to be solved on-line. In this work, we present a multiscale approach based on wavelets where a hierarchy of successively, adaptively refined problems are constructed.They are solved in the framework of nested iteration as long as the real-time restrictions are fulfilled. To avoid … Read more