Duality for Mixed-Integer Linear Programs

This paper is a survey of and some minor extensions to the theory of duality for mixed-integer linear programs. The theory of duality for linear programs is well-developed and has been extremely successful in both theory and practice. Much of this broad framework can be extended to MILPs in principle, but this has proven largely … Read more

The Mixing-MIR Set with Divisible Capacities

We study the set $S = \{(x, y) \in \Re_{+} \times Z^{n}: x + B_{j} y_{j} \geq b_{j}, j = 1, \ldots, n\}$, where $B_{j}, b_{j} \in \Re_{+} – \{0\}$, $j = 1, \ldots, n$, and $B_{1} | \cdots | B_{n}$. The set $S$ generalizes the mixed-integer rounding (MIR) set of Nemhauser and Wolsey and … Read more

Cutting planes for multi-stage stochastic integer programs

This paper addresses the problem of finding cutting planes for multi-stage stochastic integer programs. We give a general method for generating cutting planes for multi-stage stochastic integer programs based on combining inequalities that are valid for the individual scenarios. We apply the method to generate cuts for a stochastic version of a dynamic knapsack problem … Read more

A polyhedral approach to reroute sequence planning in MPLS networks

This paper is devoted to the study of the reroute sequence planning problem in multi-protocol label switching networks from the polyhedral viewpoint. The reroute sequence plan polytope, defined as the convex hull of the incidence vectors of the reroute sequences which do not violate the network link capacities, is introduced and some of its properties … Read more

A branch-and-cut algorithm for a resource-constrained scheduling problem

This paper is devoted to the exact resolution of a strongly NP-hard resource-constrained scheduling problem, the Process Move Programming problem, which arises in relation to the operability of certain high availability real time distributed systems. Based on the study of the polytope defined as the convex hull of the incidence vectors of the admissible process … Read more

The multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities … Read more

The polar of a simple mixed-integer set

We study the convex hull $P$ of the set $S = \{(x, y) \in \Re_{+} \times Z^{n}: x + B_{i} y_{ij} \geq b_{ij}, j \in N_{i}, i \in M\}$, where $M = \{1, \ldots, m\}$, $N_{i} = \{1, \ldots, n_{i}\}$ $\forall i \in M$, $\sum_{i = 1}^{m}n_{i} = n$, and $B_{1} | \cdots | B_{m}$. … Read more

Solving the Hub Location Problem with Modular Link Capacities

This paper deals with a capacitated hub location problem arising in the design of telecommunications networks. The problem is different from the classical hub location problem in two ways: the cost of using an edge is not linear but stepwise and the capacity of an hub restricts the amount of traffic transiting through the hub … Read more

Semi-Continuous Cuts for Mixed-Integer Programming

We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem is a relaxation of general mixed-integer programming. We show how strong inequalities valid for the semi-continuous knapsack polyhedron can … Read more

Decomposition and Dynamic Cut Generation in Integer Linear Programming

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are well-known methods that can be used to generate bounds for mixed-integer linear programming problems. Traditionally, these methods have been viewed as distinct from polyhedral methods, in which bounds are obtained by dynamically generating valid inequalities to strengthen the linear programming relaxation. Recently, a number of … Read more