New results related to cutters and to an extrapolated block-iterative method for finding a common fixed point of a collection of them

Given a Hilbert space and a finite family of operators defined on the space, the common fixed point problem (CFPP) is the problem of finding a point in the intersection of the fixed point sets of these operators. A particular case of the problem, when the operators are orthogonal projections, is the convex feasibility problem … Read more

Approaches to iterative algorithms for solving nonlinear equations with an application in tomographic absorption spectroscopy

In this paper we propose an approach for solving systems of nonlinear equations without computing function derivatives. Motivated by the application area of tomographic absorption spectroscopy, which is a highly-nonlinear problem with variables coupling, we consider a situation where straightforward translation to a fixed point problem is not possible because the operators that represent the … Read more

A new explicit iterative algorithm for solving split variational inclusion and fixed point problem for the infinite family of nonexpansive operators

In this paper, we introduce a new explicit iterative algorithm for finding a solution of split variational inclusion problem over the common fixed points set of a infinite family of nonexpansive mappings in Hilbert spaces. To reach this goal, the iterative algorithms which combine Tian’s method with some fixed point technically proving methods are utilized … Read more

Extrapolation and Local Acceleration of an Iterative Process for Common Fixed Point Problems

We consider sequential iterative processes for the common fixed point problem of families of cutter operators on a Hilbert space. These are operators that have the property that, for any point x∈H, the hyperplane through Tx whose normal is x-Tx always “cuts” the space into two half-spaces one of which contains the point x while … Read more