Unmatched Preconditioning of the Proximal Gradient Algorithm

This works addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). It is known that PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, and lead to an increased complexity in the computation of the proximity step. … Read more

Convergence of Proximal Gradient Algorithm in the Presence of Adjoint Mismatch

We consider the proximal gradient algorithm for solving penalized least-squares minimization problems arising in data science. This first-order algorithm is attractive due to its flexibility and minimal memory requirements allowing to tackle large-scale minimization problems involving non-smooth penalties. However, for problems such as X-ray computed tomography, the applicability of the algorithm is dominated by the … Read more

Metal Artefact Reduction by Least-Squares Penalized-Likelihood Reconstruction with a Fast Polychromatic Projection Model

We consider penalized-likelihood reconstruction for X-ray computed tomography of objects that contain small metal structures. To reduce the beam hardening artefacts induced by these structures, we derive the reconstruction algorithm from a projection model that takes into account the photon emission spectrum and nonlinear variation of attenuation to photon energy. This algorithm requires excessively long … Read more

Reconstruction of CT Images from Parsimonious Angular Measurements via Compressed Sensing

Computed Tomography is one of the most popular diagnostic tools available to medical professionals. However, its diagnostic power comes at a cost to the patient- significant radiation exposure. The amount of radiation exposure is a function of the number of angular measurements necessary to successfully reconstruct the imaged volume. Compressed sensing on the other hand … Read more