Iterative Estimation Maximization for Stochastic Linear Programs with Conditional Value-at-Risk Constraints

We present a new algorithm, Iterative Estimation Maximization (IEM), for stochastic linear programs with Conditional Value-at-Risk constraints. IEM iteratively constructs a sequence of compact-sized linear optimization problems, and solves them sequentially to find the optimal solution. The problem size IEM solves in each iteration is unaffected by the size of random samples, which makes it … Read more

Computational study of a chance constrained portfolio selection problem

We study approximations of chance constrained problems. In particular, we consider the Sample Average Approximation (SAA) approach and discuss convergence properties of the resulting problem. A method for constructing bounds for the optimal value of the considered problem is discussed and we suggest how one should tune the underlying parameters to obtain a good approximation … Read more

From CVaR to Uncertainty Set: Implications in Joint Chance Constrained Optimization

In this paper we review the different tractable approximations of individual chance constraint problems using robust optimization on a varieties of uncertainty set, and show their interesting connections with bounds on the condition-value-at-risk CVaR measure popularized by Rockafellar and Uryasev. We also propose a new formulation for approximating joint chance constrained problems that improves upon … Read more

Coherent Risk Measures in Inventory Problems

We analyze an extension of the classical multi-period, single-item, linear cost inventory problem where the objective function is a coherent risk measure. Properties of coherent risk measures allow us to offer a unifying treatment of risk averse and min-max type formulations. For the single period newsvendor problem, we show that the structure of the optimal … Read more