Risk-based Loan Pricing: Portfolio Optimization Approach With Marginal Risk Contribution

We consider a lender (bank) who determines the optimal loan price (interest rates) to offer to prospective borrowers under uncertain risk and borrowers’ response. A borrower may or may not accept the loan at the price offered, and in the presence of default risk, both the principal loaned and the interest income become uncertain. We … Read more

High-dimensional risk-constrained dynamic asset allocation via Markov stochastic dual dynamic programming

Dynamic portfolio optimization has a vast literature exploring different simplifications by virtue of computational tractability of the problem. Previous works provide solution methods considering unrealistic assumptions, such as no transactional costs, small number of assets, specific choices of utility functions and oversimplified price dynamics. Other more realistic strategies use heuristic solution approaches to obtain suitable … Read more

Ambiguous Risk Constraints with Moment and Unimodality Information

Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk (CVaR) constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional … Read more

A CVaR Scenario-based Framework: Minimizing Downside Risk of Multi-asset Class Portfolios

Multi-asset class (MAC) portfolios can be comprised of investments in equities, fixed-income, commodities, foreign-exchange, credit, derivatives, and alternatives such as real-estate and private equity. The return for such {\em non-linear} portfolios is {\em asymmetric} with significant tail risk. The traditional Markowitz Mean-Variance Optimization (MVO) framework, that linearizes all the assets in the portfolio and uses … Read more

An empirical analysis of scenario generation methods for stochastic optimization

This work presents an empirical analysis of popular scenario generation methods for stochastic optimization, including quasi-Monte Carlo, moment matching, and methods based on probability metrics, as well as a new method referred to as Voronoi cell sampling. Solution quality is assessed by measuring the error that arises from using scenarios to solve a multi-dimensional newsvendor … Read more

A data-driven, distribution-free, multivariate approach to the price-setting newsvendor problem

Many aspects of the classical price-setting newsvendor problem have been studied in the literature and most of the results pertain to the case where the price-demand relationship and demand distribution are explicitly provided. However, in practice, one needs to model and estimate these from historical sales data. Furthermore, many other drivers besides price must be … Read more

Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility

The objective of dynamic economic dispatch (DED) problem is to find the optimal dispatch of generation units in a given operation horizon to supply a pre-specified demand, while satisfying a set of constraints. In this paper, an efficient method based on Optimality Condition Decomposition (OCD) technique is proposed to solve the DED problem in real-time … Read more

Pricing Conspicuous Consumption Products in Recession Periods with Uncertain Strength

We compare different approaches of optimization under uncertainty in the context of pricing strategies for conspicuous consumption products in recession periods of uncertain duration and strength. We consider robust worst-case ideas and how the concepts of Value at Risk (VaR) and Conditional Value at Risk (CVaR) can be incorporated efficiently. The approaches are generic in … Read more

Validation Analysis of Robust Stochastic Approximation Method

The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing robust stochastic approximation (SA) type algorithms. To this end we show that while running a Robust Mirror Descent Stochastic Approximation procedure one can compute, with a small additional effort, lower and upper statistical bounds for the optimal objective … Read more

Iterative Estimation Maximization for Stochastic Linear Programs with Conditional Value-at-Risk Constraints

We present a new algorithm, Iterative Estimation Maximization (IEM), for stochastic linear programs with Conditional Value-at-Risk constraints. IEM iteratively constructs a sequence of compact-sized linear optimization problems, and solves them sequentially to find the optimal solution. The problem size IEM solves in each iteration is unaffected by the size of random samples, which makes it … Read more