An Iterative Solver-Based Long-Step Infeasible Primal-Dual Path-Following Algorithm for Convex QP Based on a Class of Preconditioners

In this paper we present a long-step infeasible primal-dual path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of a preconditioned iterative linear solver. In contrast to the authors’ previous paper \cite{ONE04}, we propose a new linear system, which we refer to as the \emph{hybrid augmented normal equation} (HANE), to … Read more

An Iterative Solver-Based Infeasible Primal-Dual Path-Following Algorithm for Convex QP

In this paper we develop an interior-point primal-dual long-step path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of an iterative (linear system) solver. We propose a new linear system, which we refer to as the \emph{augmented normal equation} (ANE), to determine the primal-dual search directions. Since the condition number … Read more

Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over symmetric cones using a wide neighborhood of the central path. The convergence is shown for a commutative family of search directions used in Schmieta and Alizadeh. These conic programs include linear and semidefinite programs. This extends the work of Rangarajan and Todd, which established … Read more

Convergence of infeasible-interior-point methods for self-scaled conic programming

We present results on global and polynomial-time convergence of infeasible-interior-point methods for self-scaled conic programming, which includes linear and semidefinite programming. First, we establish global convergence for an algorithm using a wide neighborhood. Next, we prove polynomial complexity for the algorithm with a slightly narrower neighborhood. Both neighborhoods are related to the wide (minus infinity) … Read more

Polynomial interior point cutting plane methods

Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the … Read more