On the ReLU Lagrangian Cuts for Stochastic Mixed Integer Programming

We study stochastic mixed integer programs with both first-stage and recourse decisions involving mixed integer variables. A new family of Lagrangian cuts, termed “ReLU Lagrangian cuts,” is introduced by reformulating the nonanticipativity constraints using ReLU functions. These cuts can be integrated into scenario decomposition methods. We show that including ReLU Lagrangian cuts is sufficient to … Read more

Combinatorial Robust Optimization with Decision-Dependent Information Discovery and Polyhedral Uncertainty

Given a nominal combinatorial optimization problem, we consider a robust two-stages variant with polyhedral cost uncertainty, called Decision-Dependent Information Discovery (DDID). In the first stage, DDID selects a subset of uncertain cost coefficients to be observed, and in the second-stage, DDID selects a solution to the nominal problem, where the remaining cost coefficients are still … Read more

Convex optimization on CAT(0) cubical complexes

We consider geodesically convex optimization problems involving distances to a finite set of points A in a CAT(0) cubical complex. Examples include the minimum enclosing ball problem, the weighted mean and median problems, and the feasibility and projection problems for intersecting balls with centers in A. We propose a decomposition approach relying on standard Euclidean … Read more

Distributionally Robust Facility Location with Bimodal Random Demand

In this paper, we consider a decision-maker who wants to determine a subset of locations from a given set of candidate sites to open facilities and accordingly assign customer demand to these open facilities. Unlike classical facility location settings, we focus on a new setting where customer demand is bimodal, i.e., display, or belong to, … Read more