Submodular maximization and its generalization through an intersection cut lens
\(\) We study a mixed-integer set \(\mathcal{S}:=\{(x,t) \in \{0,1\}^n \times \mathbb{R}: f(x) \ge t\}\) arising in the submodular maximization problem, where \(f\) is a submodular function defined over \(\{0,1\}^n\). We use intersection cuts to tighten a polyhedral outer approximation of \(\mathcal{S}\). We construct a continuous extension \(\mathsf{F}\) of \(f\), which is convex and defined over … Read more