Duality of ellipsoidal approximations via semi-infinite programming

In this work, we develop duality of the minimum volume circumscribed ellipsoid and the maximum volume inscribed ellipsoid problems. We present a unified treatment of both problems using convex semi–infinite programming. We establish the known duality relationship between the minimum volume circumscribed ellipsoid problem and the optimal experimental design problem in statistics. The duality results … Read more

The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

A convex body K has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi-infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We … Read more

On Khachiyan’s Algorithm for the Computation of Minimum Volume Enclosing Ellipsoids

Given $\cA := \{a^1,\ldots,a^m\} \subset \R^d$ whose affine hull is $\R^d$, we study the problems of computing an approximate rounding of the convex hull of $\cA$ and an approximation to the minimum volume enclosing ellipsoid of $\cA$. In the case of centrally symmetric sets, we first establish that Khachiyan’s barycentric coordinate descent (BCD) method is … Read more

On the Minimum Volume Covering Ellipsoid of Ellipsoids

We study the problem of computing a $(1+\eps)$-approximation to the minimum volume covering ellipsoid of a given set $\cS$ of the convex hull of $m$ full-dimensional ellipsoids in $\R^n$. We extend the first-order algorithm of Kumar and \Yildirim~that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in $\R^n$, … Read more