Phi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization

This paper investigates the use of phi-divergences in ambiguous (or distributionally robust) two-stage stochastic programs. Classical stochastic programming assumes the distribution of uncertain parameters are known. However, the true distribution is unknown in many applications. Especially in cases where there is little data or not much trust in the data, an ambiguity set of distributions … Read more

Data-Driven Inverse Optimization with Imperfect Information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent’s objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect … Read more

Near-Optimal Ambiguity sets for Distributionally Robust Optimization

We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an \emph{asymptotically optimal} set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex … Read more

Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of … Read more

A Data-Driven Approach to Newsvendor Problems

We propose an approach to the classical newsvendor problem and its extensions subject to uncertain demand that: (a) works directly with data, i.e., combines historical data and optimization in a single framework, (b) yields robust solutions and incorporates risk preferences using one scalar parameter, rather than utility functions, (c) allows for tractable formulations, specifically, linear … Read more