We generalize the Nelder-Mead simplex and LTMADS algorithms and, the frame based methods for function minimization to Riemannian manifolds. Examples are given for functions defined on the special orthogonal Lie group $\mathcal{SO}(n)$ and the Grassmann manifold $\mathcal{G}(n,k)$. Our main examples are applying the generalized LTMADS algorithm to equality constrained optimization problems and, to the Whitney … Read more


We present a general procedure for handling equality constraints in optimization problems that is of particular use in direct search methods. First we will provide the necessary background in differential geometry. In particular, we will see what a Riemannian manifold is, what a tangent space is, how to move over a manifold and how to … Read more

Asynchronous parallel generating set search for linearly-constrained optimization

Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the … Read more

A Particle Swarm Pattern Search Method for Bound Constrained Nonlinear Optimization

In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search … Read more

Optimal Information Monitoring Under a Politeness Constraint

We describe scheduling algorithms for monitoring an information source whose contents change at times modeled by a nonhomogeneous Poisson process. In a given time period of length T, we enforce a politeness constraint that we may only probe the source at most n times. This constraint, along with an optional constraint that no two probes … Read more

Algorithm xxx: APPSPACK 4.0: Asynchronous Parallel Pattern Search for Derivative-Free Optimization

APPSPACK is software for solving unconstrained and bound constrained optimization problems. It implements an asynchronous parallel pattern search method that has been specifically designed for problems characterized by expensive function evaluations. Using APPSPACK to solve optimization problems has several advantages: No derivative information is needed; the procedure for evaluating the objective function can be executed … Read more