Proximal Approaches for Matrix Optimization Problems: Application to Robust Precision Matrix Estimation.

In recent years, there has been a growing interest in mathematical mod- els leading to the minimization, in a symmetric matrix space, of a Bregman di- vergence coupled with a regularization term. We address problems of this type within a general framework where the regularization term is split in two parts, one being a spectral … Read more

Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive stepsizes and convergence

We revisit the classical Douglas-Rachford (DR) method for finding a zero of the sum of two maximal monotone operators. Since the practical performance of the DR method crucially depends on the stepsizes, we aim at developing an adaptive stepsize rule. To that end, we take a closer look at a linear case of the problem … Read more

Projection methods in quantum information science

We consider the problem of constructing quantum operations or channels, if they exist, that transform a given set of quantum states $\{\rho_1, \dots, \rho_k\}$ to another such set $\{\hat\rho_1, \dots, \hat\rho_k\}$. In other words, we must find a {\em completely positive linear map}, if it exists, that maps a given set of density matrices to … Read more

A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms

We propose a new first-order splitting algorithm for solving jointly the primal and dual formulations of large-scale convex minimization problems involving the sum of a smooth function with Lipschitzian gradient, a nonsmooth proximable function, and linear composite functions. This is a full splitting approach in the sense that the gradient and the linear operators involved … Read more