A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite Optimization

We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation of the Lagrangian optimality gap with a … Read more

Bregman primal–dual first-order method and application to sparse semidefinite programming

We present a new variant of the Chambolle–Pock primal–dual method with Bregman distances, analyze its convergence, and apply it to the centering problem in sparse semidefinite programming. The novelty in the method is a line search procedure for selecting suitable step sizes. The line search obviates the need for estimating the norm of the constraint … Read more

Proximal Approaches for Matrix Optimization Problems: Application to Robust Precision Matrix Estimation.

In recent years, there has been a growing interest in mathematical mod- els leading to the minimization, in a symmetric matrix space, of a Bregman di- vergence coupled with a regularization term. We address problems of this type within a general framework where the regularization term is split in two parts, one being a spectral … Read more