A Heuristic for Complementarity Problems Using Difference of Convex Functions

We present a new difference of convex functions algorithm (DCA) for solving linear and nonlinear mixed complementarity problems (MCPs). The approach is based on the reformulation of bilinear complementarity constraints as difference of convex (DC) functions, more specifically, the difference of scalar, convex quadratic terms. This reformulation gives rise to a DC program, which is … Read more

Interior-Point Algorithms, Penalty Methods and Equilibrium Problems

In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get around these difficulties, present an example … Read more