A truncated SQP algorithm for solving nonconvex equality constrained optimization problems

An algorithm for solving equality constrained optimization problems is proposed. It can deal with nonconvex functions and uses a truncated conjugate algorithm for detecting nonconvexity. The algorithm ensures convergence from remote starting point by using line-search. Numerical experiments are reported, comparing the approach with the one implemented in the trust region codes ETR and Knitro. … Read more

A globally convergent filter method for nonlinear programming

In this paper we present a filter algorithm for nonlinear programming and prove its global convergence to stationary points. Each iteration is composed of a restoration phase, which reduces a measure of infeasibility, and an optimality phase, which reduces the objective function in a tangential approximation of the feasible set. These two phases are totally … Read more

Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming

Line search methods for nonlinear programming using Fletcher and Leyffer’s filter method, which replaces the traditional merit function, are proposed and their global and local convergence properties are analyzed. Previous theoretical work on filter methods has considered trust region algorithms and only the question of global convergence. The presented framework is applied to barrier interior … Read more

On the Convergence of Newton Iterations to Non-Stationary Points

We study conditions under which line search Newton methods for nonlinear systems of equations and optimization fail due to the presence of singular non-stationary points. These points are not solutions of the problem and are characterized by the fact that Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear equations, … Read more

On the global convergence of an SLP-filter algorithm

A mechanism for proving global convergence infilter-type methods for nonlinear programming is described. Such methods are characterized by their use of the dominance concept of multi objective optimization, instead of a penalty parameter whose adjustment can be problematic. The main point of interest is to demonstrate how convergence for NLP can be induced without forcing … Read more

Failure of Global Convergence for a Class of Interior Point Methods for Nonlinear Programming

Using a simple analytical example, we demonstrate that a class of interior point methods for general nonlinear programming, including some current methods, is not globally convergent. It is shown that those algorithms do produce limit points that are neither feasible nor stationary points of some measure of the constraint violation, when applied to a well-posed … Read more