Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones clusters

A standard stochastic global optimization method is applied to the challenging problem of finding the minimum energy conformation of cluster of identical atoms interacting through the Lennard-Jones potential. The method proposed is based on the use of a two-phase local search procedure which is capable of significantly enlarge the basin of attraction of the global … Read more

A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones

The class of POPs (Polynomial Optimization Problems) over cones covers a wide range of optimization problems such as $0$-$1$ integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. This paper presents a new framework for convex relaxation of POPs over cones in terms of linear optimization problems over cones. It provides a … Read more

A New Mathematical-Programming Framework for Facility-Layout Design

We present a new framework for efficiently finding competitive solutions for the facility-layout problem. This framework is based on the combination of two new mathematical-programming models. The first model is a relaxation of the layout problem and is intended to find good starting points for the iterative algorithm used to solve the second model. The … Read more

Global Optimization: Software, Test Problems, and Applications

We provide a concise review of the most prominent global optimization (GO) strategies currently available. This is followed by a discussion of GO software, test problems and several important types of applications, with additional pointers. The exposition is concentrated around topics related to continuous GO, although in certain aspects it is also pertinent to analogous … Read more

New Classes of Globally Convexized Filled Functions for Global Optimization

We propose new classes of globally convexized filled functions. Unlike the globally convexized filled functions previously proposed in literature, the ones proposed in this paper are continuously differentiable and, under suitable assumptions, their unconstrained minimization allows to escape from any local minima of the original objective function. Moreover we show that the properties of the … Read more

An Attractor-Repeller Approach to Floorplanning

The floorplanning (or facility layout) problem consists in finding the optimal positions for a given set of modules of fixed area (but perhaps varying dimensions) within a facility such that the distances between pairs of modules that have a positive connection cost are minimized. This is a hard discrete optimization problem; even the restricted version … Read more