PyMOSO: Software for Multi-Objective Simulation Optimization with R-PERLE and R-MinRLE

We present the PyMOSO software package for (1) solving multi-objective simulation optimization (MOSO) problems on integer lattices, and (2) implementing and testing new simulation optimization (SO) algorithms. First, for solving MOSO problems on integer lattices, PyMOSO implements R-PERLE, a state-of-the-art algorithm for two objectives, and R-MinRLE, a competitive benchmark algorithm for three or more objectives. … Read more

Minotaur: A Mixed-Integer Nonlinear Optimization Toolkit

We present a flexible framework for general mixed-integer nonlinear programming (MINLP), called Minotaur, that enables both algorithm exploration and structure exploitation without compromising computational efficiency. This paper documents the concepts and classes in our framework and shows that our implementations of standard MINLP techniques are efficient compared with other state-of-the-art solvers. We then describe structure-exploiting … Read more

PySP: Modeling and Solving Stochastic Programs in Python

Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its wide-spread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic … Read more

The state-of-the-art in conic optimization software

This work gives an overview over the major codes available for the solution of linear semidefinite (SDP) and second-order cone (SOCP) programs. Some developments since the 7th DIMACS Challenge [9, 17] are pointed out as well as some currently under way. Instead of presenting per- formance tables, reference is made to the ongoing benchmark [19] … Read more

On solving trust-region and other regularised subproblems in optimization

The solution of trust-region and regularisation subproblems which arise in unconstrained optimization is considered. Building on the pioneering work of Gay, More’ and Sorensen, methods which obtain the solution of a sequence of parametrized linear systems by factorization are used. Enhancements using high-order polynomial approximation and inverse iteration ensure that the resulting method is both … Read more

LANCELOt_simple, a simple interface to LANCELOT B

We describe LANCELOT_simple, an interface to the LANCELOT B nonlinear optimization package within the GALAHAD} library (Gould, Orban, Toint, 2003) which ignores problem structure. The result is an easy-to-use Fortran 90 subroutine, with a small number of intuitively interpretable arguments. However, since structure is ignored, the means of presenting problems to the solver limited and … Read more

Knitro: An Integrated Package for Nonlinear Optimization

This paper describes Knitro 5.0, a C-package for nonlinear optimization that combines complementary approaches to nonlinear optimization to achieve robust performance over a wide range of application requirements. The package is designed for solving large-scale, smooth nonlinear programming problems, and it is also effective for the following special cases: unconstrained optimization, nonlinear systems of equations, … Read more

SDPARA : SemiDefinite Programming Algorithm PARAllel Version

Abstract: The SDPA (SemiDefinite Programming Algorithm) is known as efficient computer software based on primal-dual interior-point method for solving SDPs (Semidefinite Programs). In many applications, however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In execution of the SDPA applied to large scale SDPs, the computation … Read more

Implementation and Evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0

The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs(SemiDefinite Programs). It is written in C++ with the help of {\it LAPACK} for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance … Read more

Global Optimization: Software, Test Problems, and Applications

We provide a concise review of the most prominent global optimization (GO) strategies currently available. This is followed by a discussion of GO software, test problems and several important types of applications, with additional pointers. The exposition is concentrated around topics related to continuous GO, although in certain aspects it is also pertinent to analogous … Read more