Improved Bounds for the Traveling Umpire Problem: A Stronger Formulation and a Relax-and-Fix Heuristic

Given a double round-robin tournament, the traveling umpire problem (TUP) consists of determining which games will be handled by each one of several umpire crews during the tournament. The objective is to minimize the total distance traveled by the umpires, while respecting constraints that include visiting every team at home, and not seeing a team … Read more

Mixed Integer Second-Order Cone Programming Formulations for Variable Selection

This paper concerns the method of selecting the best subset of explanatory variables in a multiple linear regression model. To evaluate a subset regression model, some goodness-of-fit measures, e.g., adjusted R^2, AIC and BIC, are generally employed. Although variable selection is usually handled via a stepwise regression method, the method does not always provide the … Read more

An MILP approach to Multi-location, Multi-Period Equipment Selection for Surface Mining with Case Studies

In the surface mining industry, the Equipment Selection Problem involves choosing an appropriate fleet of trucks and loaders such that the long-term mine plan can be satisfied. An important characteristic for multi-location (multi-location and multi-dumpsite) mines is that the underlying problem is a multi-commodity flow problem. The problem is therefore at least as difficult as … Read more

Using diversification, communication and parallelism to solve mixed-integer linear programs

Performance variability of modern mixed-integer programming solvers and possible ways of exploiting this phenomenon present an interesting opportunity in the development of algorithms to solve mixed-integer linear programs (MILPs). We propose a framework using multiple branch-and-bound trees to solve MILPs while allowing them to share information in a parallel execution. We present computational results on … Read more

2-Stage Robust MILP with continuous recourse variables

We solve a linear robust problem with mixed-integer first-stage variables and continuous second stage variables. We consider column wise uncertainty. We first focus on a problem with right hand-side uncertainty which satisfies a “full recourse property” and a specific definition of the uncertainty. We propose a solution based on a generation constraint algorithm. Then we … Read more

On the Rank of Cutting-Plane Proof Systems

We introduce a natural abstraction of propositional proof systems that are based on cut- ting planes. This leads to a new class of proof systems that includes many well-known meth- ods, such as Gomory-Chvátal cuts, lift-and-project cuts, Sherali-Adams cuts, or split cuts. The rank of a proof system corresponds to the number of rounds that … Read more

Shipping Data Generation for the Hunter Valley Coal Chain

Strategic capacity planning is a core activity for the Hunter Valley Coal Chain Coordinator as demand for coal is expected to double in the next decade. Optimization and simulation models are used to suggest and evaluate infrastructure expansions and operating policy changes. These models require input data in the form of shipping stems, which are … Read more

The Quest for Optimal Solutions for the Art Gallery Problem: a Practical Iterative Algorithm

The general Art Gallery Problem (AGP) consists in finding the minimum number of guards sufficient to ensure the visibility coverage of an art gallery represented by a polygon. The AGP is a well known NP-hard problem and, for this reason, all algorithms proposed so far to solve it are unable to guarantee optimality except in … Read more

Implementing cutting plane management and selection techniques

One main objective of research in the area of mixed-integer programming is developing cutting plane techniques to improve the solvability of mixed-integer programs (MIPs). Various cutting plane separators are typically available in MIP solvers. The large number of cutting planes generated by these separators, however, can pose a computational problem. Therefore, a sophisticated cut management … Read more

On the Relative Strength of Different Generalizations of Split Cuts

Split cuts are among the most important and well-understood cuts for general mixed-integer programs. In this paper we consider some recent generalizations of split cuts and compare their relative strength. More precisely, we compare the elementary closures of {split}, {cross}, {crooked cross} and general {multi-branch split cuts} as well as cuts obtained from multi-row and … Read more