Sequential Penalty Quadratic Programming Filter Methods for Nonlinear Programming

Filter approach is recently proposed by Fletcher and Leyffer in 2002 and is attached importance to. In this paper, the filter approach is used in an sequential penalty quadratic programming (S$l$QP) algorithm which is similar to that of Yuan’s. In every trial step, the step length is controlled by a trust region radius. If the … Read more

A Local Convergence Theory of a Filter Line Search Method for Nonlinear Programming

In this paper the theory of local convergence for a class of line search filter type methods for nonlinear programming is presented. The algorithm presented here is globally convergent (see Chin [4]) and the rate of convergence is two-step superlinear. The proposed algorithm solves a sequence of quadratic progrmming subproblems to obtain search directions and … Read more

First- and Second-Order Methods for Semidefinite Programming

In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have … Read more

A globally convergent linearly constrained Lagrangian method for nonlinear optimization

For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods solve a sequence of subproblems of the form “minimize an augmented Lagrangian function subject to linearized constraints”. Such methods converge rapidly near a solution but may not be reliable from arbitrary starting points. The well known software package MINOS has proven effective on many … Read more

A Global Convergence Theory of a Filter Line Search Method for Nonlinear Programming

A framework for proving global convergence for a class of line search filter type methods for nonlinear programming is presented. The underlying method is based on the dominance concept of multiobjective optimization where trial points are accepted provided there is a sufficient decrease in the objective function or constraints violation function. The proposed methods solve … Read more

Interior-Point Method for Nonlinear Nonconvex Optimization

In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We split inequality constraints into active and inactive to overcome problems with stability. Inactive constraints are eliminated directly while active constraints are used to define symmetric … Read more

Nonsmooth Equation Method for Nonlinear Nonconvex Optimization

In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the nonsmooth equation approach. This Algorithm was implemented in the interactive system for universal functional optimization UFO. Results of numerical experiments are reported. CitationReport V844, Institute of Computer Science, AV CR, Pod Vodarenskou Vezi 2, 18207 Praha 8, … Read more

An Active-Set Algorithm for Nonlinear Programming Using Linear Programming and Equality Constrained Subproblems

This paper describes an active-set algorithm for large-scale nonlinear programming based on the successive linear programming method proposed by Fletcher and Sainz de la Maza. The step computation is performed in two stages. In the first stage a linear program is solved to estimate the active set at the solution. The linear program is obtained … Read more

A Simple Primal-Dual Feasible Interior-Point Methodfor Nonlinear Programming with Monotone Descent

We propose and analyze a primal-dual interior point method of the “feasible” type, with the additional property that the objective function decreases at each iteration. A distinctive feature of the method is the use of different barrier parameter values for each constraint, with the purpose of better steering the constructed sequence away from non-KKT stationary … Read more

On the superlinear local convergence of a filter-SQP method

Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function … Read more