A Unifying Framework for Sparsity Constrained Optimization

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then … Read more

On optimality conditions for nonlinear conic programming

Sequential optimality conditions have played a major role in proving stronger global convergence results of numerical algorithms for nonlinear programming. Several extensions have been described in conic contexts, where many open questions have arisen. In this paper, we present new sequential optimality conditions in the context of a general nonlinear conic framework, which explains and … Read more

Dynamic Scaling and Submodel Selection in Bundle Methods for Convex Optimization

Bundle methods determine the next candidate point as the minimizer of a cutting model augmented with a proximal term. We propose a dynamic approach for choosing a quadratic proximal term based on subgradient information from past evaluations. For the special case of convex quadratic functions, conditions are studied under which this actually reproduces the Hessian. … Read more