Multi-cut stochastic approximation methods for solving stochastic convex composite optimization

The development of a multi-cut stochastic approximation (SA) method for solving stochastic convex composite optimization (SCCO) problems has remained an open challenge. The difficulty arises from the fact that the stochastic multi-cut model, constructed as the pointwise maximum of individual stochastic linearizations, provides a biased estimate of the objective function, with the error being uncontrollable. … Read more

A single cut proximal bundle method for stochastic convex composite optimization

This paper considers optimization problems where the objective is the sum of a function given by an expectation and a closed convex composite function, and proposes stochastic composite proximal bundle (SCPB) methods for solving it. Complexity guarantees are established for them without requiring knowledge of parameters associated with the problem instance. Moreover, it is shown … Read more

A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes

This paper presents a proximal bundle variant, namely, the relaxed proximal bundle (RPB) method, for solving convex nonsmooth composite optimization problems. Like other proximal bundle variants, RPB solves a sequence of prox bundle subproblems whose objective functions are regularized composite cutting-plane models. Moreover, RPB uses a novel condition to decide whether to perform a serious … Read more