A single cut proximal bundle method for stochastic convex composite optimization

In this paper, we consider optimization problems where the objective is the sum of a function given by an expectation and a closed convex composite function. For such problems, we propose a stochastic composite proximal bundle (SCPB) method with optimal complexity. The method does not require estimation of parameters involved in the assumptions on the … Read more

A unified analysis of a class of proximal bundle methods for solving hybrid convex composite optimization problems

This paper presents a proximal bundle (PB) framework based on a generic bundle update scheme for solving the hybrid convex composite optimization (HCCO) problem and establishes a common iteration-complexity bound for any variant belonging to it. As a consequence, iteration-complexity bounds for three PB variants based on different bundle update schemes are obtained in the … Read more

Optimal Convergence Rates for the Proximal Bundle Method

We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a Hölder growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it … Read more

A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes

This paper presents a proximal bundle variant, namely, the relaxed proximal bundle (RPB) method, for solving convex nonsmooth composite optimization problems. Like other proximal bundle variants, RPB solves a sequence of prox bundle subproblems whose objective functions are regularized composite cutting-plane models. Moreover, RPB uses a novel condition to decide whether to perform a serious … Read more

A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems

We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. The dual solution approach needs … Read more

A Stabilised Scenario Decomposition Algorithm Applied to Stochastic Unit Commitment Problems

In recent years the expansion of energy supplies from volatile renewable sources has triggered an increased interest in stochastic optimization models for hydro-thermal unit commitment. Several studies have modelled this as a two-stage or multi-stage stochastic mixed-integer optimization problem. Solving such problems directly is computationally intractable for large instances, and alternative approaches are required. In … Read more

A doubly stabilized bundle method for nonsmooth convex optimization

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level … Read more

Inexact Dynamic Bundle Methods

We give a proximal bundle method for minimizing a convex function $f$ over $\mathbb{R}_+^n$. It requires evaluating $f$ and its subgradients with a possibly unknown accuracy $\epsilon\ge0$, and maintains a set of free variables $I$ to simplify its prox subproblems. The method asymptotically finds points that are $\epsilon$-optimal. In Lagrangian relaxation of convex programs, it … Read more

Bundle Methods for Convex Minimization with Partially Inexact Oracles

Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles … Read more