High-Level Interfaces for the Multiple Shooting Code for Optimal Control MUSCOD

The demand for model-based simulation and optimization solutions requires the availability of software frameworks that not only provide computational capabilities, but also help to ease the formulation and implementation of the respective optimal control problems. In this article, we present and discuss recent development efforts and applicable work flows using the example of MUSCOD, the … Read more

CasADi – A software framework for nonlinear optimization and optimal control

We present CasADi, an open-source software framework for numerical optimization. CasADi is a general-purpose tool that can be used to model and solve optimization problems with a large degree of flexibility, larger than what is associated with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. Of special interest are problems constrained by … Read more

Dynamic Optimal Contract under Parameter Uncertainty with Risk Averse Agent and Principal

We consider a continuous time Principal-Agent model on a finite time horizon, where we look for the existence of an optimal contract both parties agreed on. Contrary to the main stream, where the principal is modelled as risk-neutral, we assume that both the principal and the agent have exponential utility, and are risk averse with … Read more

Nonoverlapping Domain Decomposition for Optimal Control Problems governed by Semilinear Models for Gas Flow in Networks

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order … Read more

Generalized Dual Dynamic Programming for Infinite Horizon Problems in Continuous State and Action Spaces

We describe a nonlinear generalization of dual dynamic programming theory and its application to value function estimation for deterministic control problems over continuous state and action (or input) spaces, in a discrete-time infinite horizon setting. We prove that the result of a one-stage policy evaluation can be used to produce nonlinear lower bounds on the … Read more

Optimal Control of MDP’s with Unbounded Cost on Infinite Horizon

We use Markov risk measures to formulate a risk averse version of a total cost problem on a controlled Markov process in infinite horizon. The one step costs are in $L^1$ but not necessarily bounded. We derive the conditions for the existence of the optimal strategies and present the robust dynamic programming equations. We illustrate … Read more

A Condensing Algorithm for Nonlinear MPC with a Quadratic Runtime in Horizon Length

A large number of practical algorithms for Optimal Control Problems (OCP) relies on a so-called condensing procedure to exploit the given structure in the quadratic programming (QP) subproblems. While the established structure-exploiting condensing algorithm is of cubic complexity in the horizon length, in this technical note we propose a novel algorithm that is only of … Read more

Controlled Markov Decision Processes with AVaR Criteria for Unbounded Costs

In this paper, we consider the control problem with the Average-Value-at-Risk (AVaR) criteria of the possibly unbounded L 1 -costs in infinite horizon on a Markov Decision Process (MDP). With a suitable state aggregation and by choosing a priori a global variable s heuristically, we show that there exist optimal policies for the infinite horizon … Read more

Optimal Deterministic Algorithm Generation

A formulation for the automated generation of algorithms via mathematical programming (optimization) is proposed. The formulation is based on the concept of optimizing within a parameterized family of algorithms, or equivalently a family of functions describing the algorithmic steps. The optimization variables are the parameters – within this family of algorithms- that encode algorithm design: … Read more

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the $L^1$ norm to the value function as their degree $d$ tends to … Read more