On the intrinsic core of convex cones in real linear spaces

Convex cones play an important role in nonlinear analysis and optimization theory. In particular, specific normal cones and tangent cones are known to be convex cones, and it is a crucial fact that they are useful geometric objects for describing optimality conditions. As important applications (especially, in the fields of optimal control with PDE constraints, … Read more

On generalized-convex constrained multi-objective optimization

In this paper, we consider multi-objective optimization problems involving not necessarily convex constraints and componentwise generalized-convex (e.g., semi-strictly quasi-convex, quasi-convex, or explicitly quasi-convex) vector-valued objective functions that are acting between a real linear topological pre-image space and a finite dimensional image space. For these multi-objective optimization problems, we show that the set of (strictly, weakly) … Read more

Pareto Efficiency in Robust Optimization

This paper formalizes and adapts the well known concept of Pareto efficiency in the context of the popular robust optimization (RO) methodology. We argue that the classical RO paradigm need not produce solutions that possess the associated property of Pareto optimality, and illustrate via examples how this could lead to inefficiencies and sub-optimal performance in … Read more