Interior-point algorithms with full Newton steps for nonsymmetric convex conic optimization
We design and analyze primal-dual, feasible interior-point algorithms (IPAs) employing full Newton steps to solve convex optimization problems in standard conic form. Unlike most nonsymmetric cone programming methods, the algorithms presented in this paper require only a logarithmically homogeneous self-concordant barrier (LHSCB) of the primal cone, but compute feasible and \(\varepsilon\)-optimal solutions to both the … Read more